The structure of amorphous iron at high pressures to 67 GPa measured in a diamond anvil cell

Guoyin Shen a,*, Mark L. Rivers a, Stephen R. Sutton a, Nagayoshi Sata a, Vitali B. Prakapenka a, James Oxley b, Kenneth S. Suslick b

a Consortium for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA
b School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Received 18 December 2002; received in revised form 24 April 2003; accepted 2 May 2003

Abstract

We report the results of room temperature compression studies of amorphous iron up to 67 GPa. The experiments were performed with a modified diamond anvil cell (DAC) that allows for measurements of X-ray scattering to a maximum momentum of 86.6 nm$^{-1}$ using a monochromatic beam at a wavelength of 0.3311 Å. It is shown that accurate structural determination can be made for amorphous materials in a DAC to ultra high pressures. The dense random-packing model is favored to interpret our observations for amorphous iron. The resultant structure factor and the pair distribution function show that the dominant peak does not significantly change in shape and in intensity with the increase of pressure, except for peak positions. This observation is consistent with essentially zero pressure dependence of the coordination number and ratios of distances derived from the obtained pair distribution functions at high pressures. It is thus proposed that the structural contraction with the increase of pressure for amorphous iron is isotropic, which allows us to estimate volume changes as a function of pressure from the positions of the first peak in the pair distribution function. The compression behavior is found to be similar to those of b.c.c.-Fe and h.c.p.-Fe.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Amorphous structure; Iron; High pressure; Diamond anvil cell

1. Introduction

Iron is believed to be the major constituent of the Earth’s core (Birch, 1964) of which more than 96% by volume is in a liquid state. It is therefore of great geophysical interest to study the behavior of liquid iron at high pressures and high temperatures. Extensive investigations have been made by shock-wave (Ahrens and Johnson, 1995; Brown et al., 2000), static compression (Sanloup et al., 2000) and theoretical simulations (Alfe et al., 2000, 2002; Anderson and Ahrens, 1994). Information on the liquid structure provides a basis for investigating numerous macroscopic physical properties such as viscosity and self-diffusion (atomic transport) (Alfe et al., 2000; Brazhkin and Lyapin, 2000; Zhang and Guo, 2000; Zhang et al., 2000), electrical resistivity (electron transport) (Ashcroft and Lekner, 1965; March, 1990), compressibility (Ascari, 1968; Hasegawa and Watabe, 1972; Trigger et al., 1994) and thermal expansion (Hasegawa and Watabe, 1974). Such properties of the outer core are key parameters needed for modeling...
the dynamo, geomagnetism, composition and thermal state.

The structure of liquid iron has been extensively studied by theory (Alfe et al., 2000, 2002; Hausleitner and Hafner, 1989; Stixrude and Brown, 1998). Direct experimental study of the structure of liquid iron is limited to ambient pressure (Waseda and Suzuki, 1970) and to a pressure of 5 GPa with a large volume press (Sanloup et al., 2000) by X-ray scattering. Two major difficulties exist in liquid scattering experiments at high pressures. One is technical, arising from the extreme pressure-temperature (P-T) conditions required. The other difficulty with liquid scattering is the large background signal generated by the pressure vessel. Recently major progress has been made in the generation and control of extreme P-T conditions both in large volume presses (Kubo et al., 2004) and in the diamond anvil cell (DAC) (Dubrovinsky et al., 2000; Mao and Hemley, 1996; Shen et al., 2001). It is now possible to extend the measurements to extreme conditions approaching those of the outer core. To overcome the second difficulty of large background, spatial collimation is generally introduced to reduce the scattering from the pressure vessel. For example, with the energy dispersive technique, X-ray scattering is measured at a fixed angle (Katayama et al., 2000; Kruger and Meade, 1997; Meade et al., 1992; Tsubes et al., 1989). This method involves data collection at several 2θ angles and intensity normalization to the X-ray source spectrum. Recently Eggert et al. (2002) used monochromatic X-ray beam and reported structure factors of liquids (argon and water) in a DAC. Multichannel collimators have been developed with large volume presses (Mezouar et al., 2002; Yaota et al., 1997), which allows structural studies of non-crystalline materials with the angle dispersive technique. The use of a monochromatic beam greatly increases the quality of structure factor analysis determined the iron powder to be >96 wt.% iron with a trace amount of carbon (<3 wt.%) and oxygen (<1 wt.%). The sample can be easily oxidized. Therefore, the sample loading was performed in a glove box filled with inert gas (argon), which provides an atmosphere of <1 ppm O2.

A boron nitride seat (purchased from Linatec, Ukraine) was employed for high X-ray transmission over the full aperture of the DAC. The DAC used in this study is a symmetrical cell (Mao et al., 1998) with a full access opening angle of 60°. In the case of loading axis parallel to the incident X-ray beam in the present study, the maximum 2θ is 30°. With a monochromatic beam at a wavelength of 0.3311 Å, the maximum momentum transfer (Qmax = 4π sin θ/λ) is ~98 nm⁻¹. In the present study, the value of Qmax is found to be 86.6 nm⁻¹. The sample configuration is shown in Fig. 1. Type-IA diamond was used for the anvils, with a culet size of 300 μm in diameter. A stainless steel gasket with initial thickness of 250 μm was used, and pre-indented to a thickness of ~30 μm. A hole of 300 μm in diameter was drilled and then filled with inert gas (argon).
with amorphous-boron epoxy (epoxy to boron ratio of 1:2 by weight). The filled boron epoxy was then compressed by diamond anvils to a few GPa, and a 100 μm hole was drilled in the pressed boron epoxy. Finally the amorphous sample was loaded in the hole. A few ruby chips were also loaded for pressure measurement. The whole assemblage was sealed in a glove box by increasing pressures to a few GPa. The boron insert gasket helps to collect weak X-ray scattering from amorphous materials free of contamination from gasket diffraction. It also helps to make reliable background subtraction using the empty cell, without worries about gasket hole deformation.

X-ray diffraction experiments were performed at 13 BM-D at the advanced photon source. We used a 1 m long focusing mirror in the vertical direction and 0.1 m long mirror in the horizontal direction to focus the beam at the sample position to a size of 10 μm (horizontal) × 27 (vertical) μm at full width half maximum. A Bruker 2K-CCD detector was used to collect X-ray scattering. Typical exposure time was 10 min. Multiple exposures (2–3 times) were made for better statistics at high pressures. The sample-detector distance and the detector tilt angles were calibrated using powder diffraction from a CeO₂ standard that was placed at the sample position with the help of a microscope. The 2D images were angularly integrated by using the program FIT2D (Hammersley et al., 1996), and all geometric and polarization corrections were made during the integration. In cases where a few diffraction spots arose from the ruby chips, masks were used in the integration.

After reaching to a maximum pressure of 67 GPa, pressure was released and the sample was removed from the gasket hole. The same gasket was then put back in the cell, and the empty cell reference was measured with geometry identical to that at high pressures with help of a kinematic base.

3. Data analysis

3.1. Data reduction to atomic units

The description of the atomic distribution in non-crystalline materials usually employs the concepts of the structure factor and the pair distribution function in atomic units. The measured X-ray scattering intensity is in arbitrary units and needs to be converted into atomic units to describe the structure.
The observed X-ray scattering intensity is the combination of sample and background contributions:

\[ I_{\text{obs}}(Q) = a(Q)I_{\text{amp}}(Q) + bI_{\text{back}}(Q) \]  

(1)

where \( Q = 4\pi \sin(\theta)/\lambda \) is the scattering momentum, \( a(Q) \) the diamond anvil cell transmission, \( b \) the scale factor for background correction, \( I_{\text{amp}}(Q) \) the scattering from the sample, and \( I_{\text{back}}(Q) \) the background scattering from the same DAC without sample. The transmission \( a(Q) \) can be calculated according to the cell dimensions and absorption coefficients of materials involved. The factor \( b \) is determined as follows (Fig. 2). At values of \( Q \) larger than 86.6 nm\(^{-1} \), the sample signal is blocked by the cell body. The intensity in this region should be zero, a criterion used for determining the factor \( b \). The subtracted pattern is also checked for reasonableness in the small-\( Q \) region.

When an oscillation was observed in the small-\( Q \) region due to slight mislocation of the beam stop, a linear fit was applied to remove the oscillation. Eq. (1) allows us to obtain the scattering from the sample: \( I_{\text{amp}}(Q) \).

By introducing a normalization factor \( N \), the total scattering from the sample \( I_{\text{amp}}(Q) \) can be expressed in atomic units by the coherent scattering \( I_{\text{coh}}(Q) \), incoherent scattering \( I_{\text{incoh}}(Q) \), and the multiple scattering \( I_{\text{mul}}(Q) \) (Waseda, 1980):

\[ NI_{\text{amp}}(Q) = I_{\text{coh}}(Q) + I_{\text{incoh}}(Q) + I_{\text{mul}}(Q) \]  

(2)

The incoherent scattering contribution can be computed using the analytic formulas (Balyuzi, 1975; Thakkar and Chapman, 1975). The multiple scattering is generally neglected in X-ray diffraction (Waseda, 1980). By definition, the structure factor is obtained from the coherent scattering: \( S(Q) = I_{\text{coh}}(Q)/f^2(Q) \).
where $f(Q)$ is the atomic scattering factor (International Tables of Crystallography).

We determine the normalization factor $N$ by using Krogh–Moe–Norman method (Krogh-Moe, 1956; Norman, 1957)

$$N = \frac{\int_0^{Q_{\text{max}}} Q^2 \left[ f^2(Q) + I_{\text{incoh}}(Q) \right] \exp(-\gamma Q^2) \, f^2(Q) \, dQ - 2\pi n_0}{\int_0^{Q_{\text{max}}} Q^2 \left[ f_{\text{obs}}(Q) \right] \, dQ}$$

(3)

where $n_0$ is the average atomic number density of the sample. The damping factor $\exp(-\gamma Q^2)$ is introduced to reduce errors in the high-$Q$ region due to the factor $Q^2$ in Eq. (3) (Waseda, 1980). $\gamma$ of 0.001 was used in the present study. By definition, the structure factor is then calculated by

$$S(Q) = \frac{1}{f^2(Q)} \left[ N \left[ f_{\text{obs}}(Q) - bI_{\text{back}}(Q) \right] a(Q) - I_{\text{incoh}}(Q) \right]$$

(4)

The Fourier transformation of $Q[S(Q) - 1]$ is the distribution function in real space:

$$F(r) = 4\pi m(r) - 4\pi n_0$$

$$= \frac{2}{\pi J_0} \int_0^{Q_{\text{max}}} Q[S(Q) - 1] \sin(rQ) \, dQ$$

(5)

where $m(r)$ is the function of atomic number density. From $F(r)$, the pair distribution function $g(r)$ is obtained:

$$g(r) = 1 + \frac{F(r)}{4\pi n_0 r}$$

(6)

![Graph showing iteration evolutions of the structure factor $S(Q)$ and the distribution function $F(r)$ for amorphous iron at ambient pressure. $F_{\text{inc}}(r)$ shows oscillations in the small-$r$ region due to errors in $S(Q)$. Note that these oscillations quickly converge after a few iterations.](image-url)
3.2. Optimization procedure

Since the atoms do not approach each other within the atomic core diameter, \( n(r) \) should be zero in this region. Therefore, from Eq. (3) we have

\[
F(r) = -4\pi n_0 \text{ (small } r) \tag{7}
\]

From this Kaplow et al. (1965) and Eggert et al. (2002) proposed a refinement procedure for \( S(Q) \) and \( g(r) \). The refinement procedure is based on the observation that errors in \( F(r) \) due to uncertainties in \( S(Q) \) are dominant in the small-\( r \) region. The relation (Eq. (7)) can be used as an iterative feedback to determine a corrected value for \( S(Q) \). Following their approaches, we established an iterative procedure for analyzing the amorphous iron data. According to Eqs. (5) and (7), we have

\[
F(i)(r) = \frac{2}{\pi} \int_0^{Q_{\text{max}}} Q[S(i)(Q) - 1] \sin(rQ) \, dQ \tag{8}
\]

\[
\Delta F(i)(r) = F(i)(r) + \frac{4\pi n_0}{r_{\text{min}}} \quad (r < r_{\text{min}}) \tag{9}
\]

where \( r_{\text{min}} \) is a value close to the atomic radius, \( i \) denotes iteration number. An improved \( S(i+1)(Q) \) can then be obtained by applying the Fourier transformation of \( \Delta F(i)(r) \):

\[
S(i+1)(Q) = S(i)(Q) - \frac{1}{Q} \int_0^{r_{\text{min}}} \Delta F(i)(r) \sin(rQ) \, dr \tag{10}
\]

Fig. 4. Behavior of the optimized structure factor \( S(Q) \) and the pair distribution function \( g(r) \) as a function of \( r_{\text{min}} \) (Eqs. (9) and (10)) for amorphous iron at ambient pressure. The small peak below the dominant peak in \( g(r) \) may be removed by using values of \( r_{\text{min}} \) larger than 0.176 nm. However, the resultant \( S(Q) \) becomes unphysical. Reasonable \( S(Q) \) is obtained with \( r_{\text{min}} \) of 0.146 nm, a number close to atomic core radius. Numbers in the figure are in units of nm.
This process is found to be effective and convergence is rapid as shown in Fig. 3.

The above process requires the value of atomic density $n_0$. In this study, $n_0$ at high pressures are from a separate work using the X-ray absorption method. This method has been successfully used for determinations of densities of liquids in a DAC (Shen et al., 2002a). Eggert et al. (2002) estimated $n_0$ by minimizing a chi-squared misfit:

$$\chi^2 = \int_{r_{\text{min}}}^{0} \left[ F(i)(r) - \Delta F_{\text{fit}}(r) \right]^2 dr,$$

for high pressure fluids (argon and water), where $i$ is the iteration number. This could be significant because it provides a method for measuring equations of state for amorphous materials from determinations of the structure factor. However, we found that the values of $\chi^2$ is extremely sensitive to $r_{\text{min}}$ in Eq. (10). The determined $n_0$ in this way could be unphysical without strong constraints on $r_{\text{min}}$.

### 3.3. Effects of $r_{\text{min}}$ and $Q_{\text{max}}$

While spurious oscillations in the distribution function $F(r)$ at small values of $r$ can be effectively removed by applying the above optimization procedure (Fig. 3), it is necessary to perform reliability checks for the corrected $S(Q)$. We make use of two criteria: (1) in the small-$Q$ region, $\lim_{Q \to 0} S(Q) = S(0) = n_0 k_B T \beta$, where $k_B$ is the Boltzmann constant, $\beta$ the isothermal compressibility and $T$ the absolute temperature; (2) the corrected $S(Q)$ must be compared with the original data within experimental errors.

For example, as shown in Fig. 4, a peak at around 0.16 nm below the first peak in $g(r)$ can be removed by having $r_{\text{min}}$ larger than 0.176 nm. However, the resultant $S(Q)$ with $r_{\text{min}}$ larger than 0.176 nm becomes negative at small-$Q$, in conflict with the criterion (1) mentioned above. The optimum $S(Q)$ is then found at

![Fig. 5. Truncation effect of $Q_{\text{max}}$ on the distribution function $F(r)$. The differences in $F(r)$ are shown in (a). Note that the large oscillations are in the vicinity of the first dominant peak. Numbers in the figure are in units of nm$^{-1}$.

---

**Fig. 5.** Truncation effect of $Q_{\text{max}}$ on the distribution function $F(r)$. The differences in $F(r)$ are shown in (a). Note that the large oscillations are in the vicinity of the first dominant peak. Numbers in the figure are in units of nm$^{-1}$.**
are functions of $Q$ matter. Large $Q$-range coverage will clearly help on this aspect. For example, based on Waseda (1980), the ghost maxima are at distances about $\pm (5/4)2\pi/Q_{\text{max}}$, $\pm (9/4)2\pi/Q_{\text{max}}$, ... from the main peak position. As shown in Fig. 5b, the distribution functions in real space are plotted from the data with different values of $Q_{\text{max}}$. With increasing values of $Q_{\text{max}}$, two sub-peaks beside the dominant peak shift close to the main peak, and their positions are close to the ghost maxima. Thus, these two sub-peaks are interpreted as not real but ghost peaks from the truncation effect in Fourier transformation as discussed below.

The truncation of the experimental data at $Q_{\text{max}}$ is a limiting factor to derive accurate information in real space. This is especially true for high pressure studies because of the limited scattering angle accessible with high pressure instruments. The truncation could lead to ghost peaks in $F(r)$, and their positions are functions of $Q_{\text{max}}$. For example, based on Waseda (1980), the ghost maxima are at distances about $\pm (5/4)2\pi/Q_{\text{max}}$, $\pm (9/4)2\pi/Q_{\text{max}}$, ... from the main peak position. As shown in Fig. 5b, the distribution functions in real space are plotted from the data with different values of $Q_{\text{max}}$. With increasing values of $Q_{\text{max}}$, two sub-peaks beside the dominant peak shift close to the main peak, and their positions are close to the ghost maxima. Thus, these two sub-peaks are interpreted as not real but ghost peaks from the truncation effect. At values of $Q_{\text{max}}$ larger than 85 nm$^{-1}$, we found that the general pattern remains the same, with a slight increase in peak resolution as value of $Q_{\text{max}}$ increases. Practically speaking, it is helpful to terminate $S(Q)$ at several values of $Q$ less than the experimental limit of $Q_{\text{max}}$ and to check the resultant effects on $F(r)$. However, it is still difficult to state the accuracy of the obtained distribution functions. Large $Q$-range coverage will clearly help on this matter.

The differences in $F(r)$ with various $Q_{\text{max}}$ values, the relative to that with $Q_{\text{max}}$ of 96 nm$^{-1}$, are plotted in Fig. 5a. The resultant error results in oscillations with an approximate period of $2\pi/Q_{\text{max}}$. It is noted that the greatest oscillation occurs in the vicinity of the first peak, where it holds the most critical information (Fig. 5a). Again it shows that large $Q$ coverage is important in experiments. In the present study, $Q_{\text{max}}$ value of 96 nm$^{-1}$ is used for the data at ambient pressure and $Q_{\text{max}}$ value of 86.6 nm$^{-1}$ for data at high pressures.

4. Results and discussions

4.1. Data at ambient pressure

The prepared sample is very sensitive to oxygen, to a level of only a few ppm (Suslick et al., 1991). For high pressure measurements, the sample was well sealed by two diamond anvils and free from oxygen contamination. Interestingly, in our experiments after compression to a maximum pressure of 67 GPa, the sample was removed from the DAC in air and the X-ray scattering pattern was found to be consistent with those for the sample in the cell and also with the neutron scattering data (Bellissent et al., 1993). This indicates that the recovered sample is still amorphous iron, providing X-ray scattering data at ambient pressure. The oxidation resistance could be due to high pressure compression under ultra high pressures for this initially porous sample. After compression in the DAC, the compact sample has two surfaces as shiny as diamond anvils, which may retard the sample oxidation. This is the first time that such sample has been preserved in air, and it is achieved with high pressure compression.

The recorded data were analyzed with the procedures mentioned above. Since the data were collected with the sample outside the DAC, $S(Q)$ and $b$ in Eq. (1) are both unity. The sample’s self-absorption effect is neglected in this study because the sample thickness is only on the order of 10 $\mu$m. Change in absorption over $Q$-range to 100 nm$^{-1}$ is less than 0.1% for an iron sample with a thickness of 10 $\mu$m at 37.44 keV. Fig. 6 shows the structure factor and the pair distribution function of the amorphous iron at ambient pressure, together with the data of liquid iron at 1833 K (Waseda and Suzuki, 1970) for comparison.

4.2. High pressure data

The structure factor and the pair distribution function at high pressures are summarized in Fig. 7. $Q_{\text{max}}$ of 86.6 nm$^{-1}$ is used to derive $g(r)$ for all pressures, including that at ambient pressure. It is found that with increasing pressure the peak height of $S(Q)$ (Fig. 7a) remains essentially the same, although the peak position shifts to a higher $Q$ value. Similar features were found in $g(r)$ in real space. The peak height in $g(r)$ does not significantly change with increase of pressure, while the peak position shifts to a smaller $r$ values, an indication of compression. Peak positions in $g(r)$ are summarized in Table 1.

With the concept of the nearest coordination number (CN), we may describe the picture of the nearest neighbor atoms in a quantitative way. There is no
Fig. 6. The structure factor $S(Q)$ and the pair distribution function $g(r)$ of amorphous iron at ambient pressure. Data for liquid iron (Waseda and Suzuki, 1970) and crystalline b.c.c.-Fe are shown for comparison.

4.3. The structure of amorphous iron

As shown in Fig. 6, the general structural feature of the amorphous state is similar to that of the liquid state except for a few weak peaks. In the liquid state, the amplitude of the atomic vibration is large, leading to a large uncertainty in the position of the lattice point, thus resulting in an averaged smooth distribution in both $S(Q)$ and $g(r)$ (Fig. 6). On the other hand, the small amplitude of vibration of atoms in the amorphous state contributes to the construction of a more fixed atomic arrangement, causing some small peaks in $S(Q)$ and $g(r)$ (Fig. 6).
Fig. 7. (a) The structure factor \( S(Q) \) at high pressures. (b) The pair distribution function \( g(r) \) at high pressures. An offset of 0.5 in both \( S(Q) \) and \( g(r) \) is applied between pressures for clarity. Peaks marked with (*) may arise from the truncation effect (see text). No clear change in shape or intensity is observed for the dominant first peak in \( S(Q) \) and \( g(r) \), while the peak positions vary with pressure.
Table 1

Peak positions and calculated ratios of distances in $g(r)$ at various pressures

<table>
<thead>
<tr>
<th>$P$ (GPa)</th>
<th>CN atoms</th>
<th>$r_1$ (nm)</th>
<th>$r_2$ (nm)</th>
<th>$r_3$ (nm)</th>
<th>$r_2/r_1$</th>
<th>$r_3/r_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9.3(4)</td>
<td>0.2644(13)</td>
<td>0.432(3)</td>
<td>0.500(4)</td>
<td>1.63</td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.256p</td>
<td>0.434p</td>
<td>0.499p</td>
<td>1.69p</td>
<td>1.93p</td>
</tr>
<tr>
<td>7</td>
<td>10.1(5)</td>
<td>0.2615(15)</td>
<td>0.430(3)</td>
<td>0.500(4)</td>
<td>1.64</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.258p</td>
<td>0.429(3)</td>
<td>0.499(5)</td>
<td>1.64</td>
<td>1.91</td>
</tr>
<tr>
<td>12</td>
<td>10.5(5)</td>
<td>0.2616(15)</td>
<td>0.429(5)</td>
<td>0.499(5)</td>
<td>1.64</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.258p</td>
<td>0.423(3)</td>
<td>0.485(3)</td>
<td>1.64</td>
<td>1.90</td>
</tr>
<tr>
<td>22</td>
<td>10.6(5)</td>
<td>0.2570(15)</td>
<td>0.421(3)</td>
<td>0.489(3)</td>
<td>1.64</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.258(3)</td>
<td>0.423(3)</td>
<td>0.485(3)</td>
<td>1.64</td>
<td>1.90</td>
</tr>
<tr>
<td>28</td>
<td>10.9(5)</td>
<td>0.2549(15)</td>
<td>0.418(3)</td>
<td>0.483(3)</td>
<td>1.64</td>
<td>1.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.255(3)</td>
<td>0.418(3)</td>
<td>0.483(3)</td>
<td>1.64</td>
<td>1.89</td>
</tr>
<tr>
<td>36</td>
<td>10.5(5)</td>
<td>0.2507(15)</td>
<td>0.408(3)</td>
<td>0.480(3)</td>
<td>1.63</td>
<td>1.91</td>
</tr>
<tr>
<td>48</td>
<td>10.5(5)</td>
<td>0.2489(15)</td>
<td>0.406(3)</td>
<td>0.474(3)</td>
<td>1.62</td>
<td>1.90</td>
</tr>
<tr>
<td>55</td>
<td>11.1(5)</td>
<td>0.2492(15)</td>
<td>0.416(3)</td>
<td>0.476(4)</td>
<td>1.66</td>
<td>1.91</td>
</tr>
<tr>
<td>67</td>
<td>10.5(5)</td>
<td>0.2462(15)</td>
<td>0.406(3)</td>
<td>0.469(3)</td>
<td>1.64</td>
<td>1.90</td>
</tr>
</tbody>
</table>

*Data collected on decreasing pressure.
*Bellissent et al. (1993).

Fig. 8. The nearest neighbor coordination (CN) number as a function of pressure, determined according to Eq. (11). No pressure dependence is observed within experimental uncertainties, with an average number at 10.5(5). Errors in CN are estimated to be 5%. Errors in pressures are from multiple ruby fluorescence measurements in the region of 30μm around the sample.
There are two models in the literature for amorphous structures, the microcrystalline disorder model and the topological disorder model (Waseda, 1980) (Fig. 9). Studies on thin films of amorphous iron showed that the later type describes the amorphous structure well (Ichikawa, 1973; Leung and Wright, 1974). Ichikawa (1973) suggested a dense random-packing model (DRP), in which the structure is built by packing of essentially irregular assemblages of basic polyhedra, such as tetrahedra and octahedra, without vacancy and long-range order. From this study, our data also support the concept of a truly amorphous phase devoid of crystalline order based on the following findings.

1. No noticeable change in shape is observed in $S(Q)$ or $g(r)$ with increase of pressure (Fig. 7). The ratios of the distances in Table 1 are essentially constant as a function of pressure. These observations disfavor the microcrystalline disorder model because crystalline iron undergoes a phase transition at around 12 GPa (b.c.c. to h.c.p. phase transition), and the phase change would affect the pattern shape and the radial distances in $g(r)$ according to the calculations of Ichikawa (1973). (2) As it can be seen in Table 1, the ratios of the distances between our data at ambient pressure and those from thin films result are in good agreement, suggesting an analogous structure.

According to the DRP model, the structure is constructed by serially and densely piling up regular or slightly distorted polyhedra (tetrahedra and octahedra) around a seed cluster (Ichikawa, 1973). The ratios of the distances of $r_2/r_1$ and $r_3/r_1$ for the amorphous iron in this study are found to be in the vicinity of 1.64 and 1.91, respectively (Table 1). The ratio of $r_2/r_1$ is very close to the $c/a$ ratio in closed packed hexagonal structure ($c/a = 1.63$). The peak of $r_2$ is thus assigned to the basic tetrahedral unit. The close comparison to the ideal value indicates that the tetrahedra are regular by average. As shown in Fig. 9b, by combining octahedra and tetrahedra, the distance $r_3$ is $\sim 1.90r_1$. This combination produces a ratio close to the measured value of $r_3/r_1$. Therefore, the basic polyhedra observed consist of tetrahedra and octahedra. The broad peaks in $g(r)$, always observed in amorphous materials, suggest that most of these polyhedra are slightly deformed.

4.4. High pressure compression

One feature of our high pressure data is that the dominant peak, both in $S(Q)$ and $g(r)$, does not significantly change with increase of pressure, except that the peak position shifts to a higher $Q$ value and to a smaller $r$ value, respectively. This observation is further confirmed by the derived coordination number and ratios of distances (Fig. 8, Table 1). Essentially no pressure dependence is observed for these numbers within experimental uncertainty. This implies that the contraction of the amorphous iron is isotropic under...
Fig. 10. High pressure volume compression of amorphous iron measured by the peak shift of the first peak in \( g(r) \) (Fig. 7b). The validity of using the peak shifts to represent the volume changes is based on constant packing density as a function of pressure (Eq. (12)). The overall compression is comparable to the behaviors of b.c.c.-Fe and h.c.p.-Fe (Jephcoat et al., 1986; Mao et al., 1990).

By adopting the concept of the packing density (Ashcroft and Lekner, 1965)

\[
\eta \equiv n_0 \frac{4}{3} \pi \left( \frac{2\sigma}{\pi} \right)^3 = \frac{1}{6} n_0 \pi \sigma^3
\]

where \( \sigma \) is the hard-sphere diameter, isotropic contraction means a constant packing density \( \eta \) with pressure. Indeed, by applying the hard-sphere model, coupled with the Percus–Yevick equation (Ashcroft and Lekner, 1965), to fit the first peak in \( S(Q) \), we obtained \( \eta \) of 0.43(1) for all pressures up to 67 GPa.

From Eq. (12), isotropic contraction makes it possible to estimate densities of amorphous iron at high pressures according to the peak positions of \( r_1 \). Although the absolute values of \( r_1 \) might be different from the hard-sphere diameter \( \sigma \) in Eq. (12), the change of \( r_1 \) with pressure represents the decrease of \( \sigma \). Fig. 10 shows the plot of \( V/V_0 = r_1^3/[r_1^3_{\text{ambient}}] \) as a function of pressure compared with the compression behaviors of b.c.c.-Fe (Jephcoat et al., 1986) and h.c.p.-Fe (Mao et al., 1990). Error bars in volume are from uncertainties in the peak fitting with a Gaussian function. Pressure error bars are from the gradients within 30 \( \mu \)m around the sample center. The overall compression is comparable to the behaviors of b.c.c.-Fe and h.c.p.-Fe. The data appear to be too scattered to fit with an equation of state. The scattering of data could be due to the stress effect arising from the pressure gradient, because no pressure medium was used in the present study to avoid unwanted scattering from other materials. The broad peak in \( g(r) \) also limits the precision in determining the peak position.

It should be noted that the coordination number has been found to increase with pressure for many materials (Brown and Barnett, 1972; Shen et al., 2002b; Urakawa et al., 1999), especially for those with open structures (Funamori and Tsuji, 2002). In that case, caution should be taken in using Eq. (12) for estimating densities at high pressures (Brown and Barnett, 1972).

5. Conclusions

We have measured the structure of an amorphous iron sample of high purity at room temperature and at
pressures up to 67 GPa. A modified diamond anvil cell is used, allowing measurements of the X-ray scattering to a maximum momentum \( Q_{\text{max}} \) of 86.6 nm\(^{-1} \) with a monochromatic beam at a wavelength of 0.3311 Å. It is demonstrated that the weak scattering from the amorphous sample can be measured with the DAC up to ultra high pressures. By following the approaches of Eggert et al. (2002) and Kaplow et al. (1965), an optimization procedure is used to obtain accurate structural data of amorphous materials at high pressures. It is shown that spurious oscillations in \( g(r) \) at the small-\( r \) region can be effectively corrected by applying this optimization procedure. It is also noted that truncation of the experimental data at \( Q_{\text{max}} \) is a limiting factor. Large \( Q \) coverage in experiments is desirable. Insufficient \( Q \)-range can cause inaccurate data in the pair distribution function \( g(r) \), especially in the critical region around the first peak (Fig. 5).

The structure of amorphous iron is similar to that of liquid iron. A few peaks in \( g(r) \) for the amorphous state are attributed to the construction of a more fixed atomic arrangement than in liquid. It is found that the dense random-packing model (Ichikawa, 1973) is favored to interpret our observations. From both the structure factor \( S(Q) \) and the pair distribution function \( g(r) \), the dominant peak does not significantly change in shape or intensity with increase of pressure, except that the peak position shifts to a higher \( Q \) value and to a smaller \( r \) value, respectively. This observation is consistent with the essentially zero pressure dependence of the coordination number (Fig. 8) and ratios of distances listed in Table 1, resulting in a conclusion of structurally isotropic contraction with pressure for amorphous iron. The isotropic contraction allows us to estimate the volume changes as a function of pressure from the positions of the first peak in the pair distribution function \( g(r) \). The compression behavior at room temperature is found to be similar to those of b.c.c.-Fe and h.c.p.-Fe (Jephcoat et al., 1986; Mao et al., 1990) (Fig. 10).

Acknowledgements

Thanks are due to Jennifer Jackson, Jason Nicholas, and Stas Sinogeikin for the help during sample loading, Peter Eng in X-ray scattering experiments. Comments by Jennifer Jackson, Satoru Urakawa, and Nobumasa Funamori improved the manuscript. This work is supported by NSF-EAR 0001149 and 0229987. The GSECARS sector is supported by the National Science Foundation (Earth Sciences Instrumentation and Facilities Program) and Department of Energy-Basic Energy Sciences (Geoscience Program).

References


