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Highlights 
• A mathematical model is derived for the crystal breakage that results from ultrasound 

• Population balance models are developed for three models of binary breakage events 

• Dependencies of cavitation rate on applied power and solvent viscosity are provided 

• Agreement with experiments is good for aspirin crystals undergoing sonofragmentation 

• Analysis supports the model in which crystals break into two equal-sized particles 

 

Abstract 
 

While the effects of ultrasound on crystals have been heavily investigated experimentally, population 

balance models that describe the effects of all physical parameters such as solution viscosity and applied 

power on the crystal size distribution have been lacking. This article presents one of the first population 

balance models for describing the crystal breakage that results from ultrasound. Aspirin crystals dispersed 

in various solvents, dodecane and silicon oils of known viscosity, were subjected to ultrasound to study 

this sonofragmentation that occurs due to cavitation when bubbles violently collapse, creating extreme 

conditions in the immediate vicinity of the bubbles. Population balance models are developed with three 

models for binary breakage events and cavitation rate proportional to the applied power and exponentially 

related to solvent viscosity. The resulting population balance models provide reasonable agreement with 

the experimental data over the ranges of applied power and solvent viscosity investigated, with nearly 

overlapping crystal size distributions for applied power between 10 and 40 W. The statistical analysis 

supports the breakage model in which cavitation bubbles cause the aspirin crystals to break into two 

equal-sized particles. 

 

Keywords: ultrasound; population balance modeling, crystallization; particle technology; kinetics 

estimation 

 

1 Introduction 
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The application of high-intensity ultrasound to crystallization is an area of significant interest 

and is as an effective technique for inducing nucleation and controlling particle size distributions. 

While the effects of ultrasound on crystals have seen some experimental investigation 

(Devarakonda et al., 2004; Guo et al., 2007; Raman et al., 2008; Wagterveld et al., 2011; Teipel 

et al., 2002; 2004), population balance models that describe the effects of all physical parameters 

such as liquid viscosity and applied power on the crystal size distribution have been lacking. 

Raman et al. (2011) demonstrated the application of Kapur function analysis to obtain grinding 

kinetics in a system of inorganic particles dispersed in water. This paper presents a different 

approach to modeling ultrasonic breakage for an organic system over a range of shorter times 

and lower ultrasound intensity and specifically investigates the effect of varying solvent 

viscosity. 

Aspirin crystals dispersed in the nonsolvent dodecane were subjected to ultrasound to study 

this sonofragmentation, which occurs due to acoustic cavitation, which is the formation, growth, 

and implosive collapse of bubbles in an ultrasonic field. The final bubble collapse results in 

extreme local temperatures and pressures and produces high-pressure shockwaves that propagate 

through the liquid (Doktycz & Suslick, 1990; Suslick et al., 1999). The time evolution of the 

crystal size distribution is described by the population balance equation for breakage only with 

three models for binary breakage events: (A) crystals break in half; (B) crystals break with 

uniform probability into each pair of sizes allowed by the discretization of the length axis; and 

(C) crystals break with nonuniform probability into each pair of sizes allowed by the 

discretization of length. Models A and B have two parameters that describe the breakage rate as 

a function of applied power and solvent viscosity, while Model C also includes a third parameter 

that is the standard deviation σ of the breakage distribution. 

The remainder of this paper is organized as follows. A description of the methodology and 

mathematical model is followed by a comparison and discussion of the simulation results. 

2 Materials and Methods 

2.1 Population Balance Models 

The experimental setup for the sonofragmentation experiments is shown in Fig. 1 and 

described by Zeiger & Suslick (2011). Nonsolvents dodecane (viscosity = 1.8 cSt) and silicone 

oil (viscosity = 20, 50, 100, 115, 154, 220, 244, 350, 500, and 1000 cSt) are used to disperse the 
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crystals. Various power levels (3, 5, 10, 20, 30, 40 W) are applied to the ultrasound horn for 1 

minute, which caused cavitation and crystal breakage. 

Crystals are characterized in terms of circularity and surface area as measured via optical 

microscopy. The circularity is defined as 

 
2

4 a
c

p


  (1) 

where a is the surface area and p is the perimeter of the two-dimensional image of the crystal 

(see Fig. 1c). The crystal depth d, defined as the shortest dimension, is estimated from the 

surface area and perimeter using a proportionality constant obtained from the scanning electron 

microscope (SEM) images assuming that the particles have a similar shape: 

 
2.06

a
d

p
 . (2) 

The mass for each particle was calculated from 

 m ad  (3) 

where ρ is the crystal density. 

The sonofragmentation was modeled by the population balance equation for breakage only 

(Tan et al., 2004), 

 
[ ( , )] ( ) ( , ) ( , ) ( ) ( , )

m
n t m S u b m u n t u du S m n t m

t


 

  , (4) 

where S is the breakage rate, b is the breakage function, n is the number density function, and m 

is the crystal mass. The breakage rate S [1/s] in (4) is assumed to follow the standard power-law 

function of the crystal mass (Tan et al., 2004): 

 
1( ) , 0,qS m S m q   (5) 

with exponent q and selection rate constant S1 related to the cavitation rate. For any q > 0, this 

expression has the breakage rate approaching zero as the crystal mass m approaches zero. In any 

single experiment, the average breakage rate per particle would reduce over time and further 

reduction in the number density function would become slower over time until appearing to 

approach a limiting value over the finite time duration of the single experiment. 

The cavitation rate has been reported to be proportional to the applied power over the ranges 

considered here (Colussi et al., 1999; Son et al., 2009). Experimentally, the cavitation rate was 
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observed to be exponentially related to the liquid viscosity   (in cSt, see Fig. 2). Combining 

these relationships provides an expression for S1: 

 1 0 exp( 0.0069 )S S    , (6) 

where the applied power 
 
is in units of Watts. This model does not consider dependencies on 

additional parameters such as surface tension or equilibrium vapor pressure of the liquid. 

2.2 Breakage Models 

Here a procedure is described for simulation of the population balance equation for breakage 

(1). This matrix approach is similar to that developed for coal milling processes (Broadbent et 

al., 1956). The minimum crystal mass that can occur during the breakage experiments, mmin, was 

chosen and the crystal mass data scaled by a constant so that mmin = 1. The discretization of the 

crystal mass m was selected so that Δm = mmin = 1, which results in all scaled crystal masses 

taking on integer values (e.g., see Fig. 3). Assuming that crystals break into two crystals of equal 

mass for even integer masses and nearly equal masses for odd integer masses (e.g., a crystal with 

mass of 4 breaks into two crystals of mass 2; a crystal with mass of 5 breaks into two crystals of 

masses 2 and 3), the breakage function b in (1) can be written as 

 

2, 2

1, 2 1
( , )

1, 2 1

0, otherwise

u m

u m
b m u

u m




 
 

 


 (7) 

Discretizing the population balance equation (1) with respect to mass results in 

1 1

1 1 1 1 max

1 1 1 m
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 (8) 

where imax is defined by the largest crystal size. The time derivative is replaced with the first-

order forward-difference approximation, 

 
1( , ) ( , )

[ ( , )]
j i j i

i

n t m n t m
n t m

t t

 


 
, (9) 
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with the initial condition determined by the mass distribution of unbroken crystals CSD that was 

experimentally measured (Figs. 4 & S1). To prevent negative values for n from occurring due to 

discretization error for very high values of S0 and q in (4)–(5), the timestep was set to satisfy  

 
1 max

1

4 q
t

S m
  . (10) 

The right-hand side of (4) was written as the multiplication of a vector and a sparse matrix: 

 
1( ) ( )j jn t n t A   (11) 

where ( )jn t  is a row vector of length imax and A is a lower diagonal square matrix with an 

interesting structure, with the 10×10 case being 

 

2 2

3 3 3

4 4

5 5 5

6 6

7 7 7

8 8

9 9 9

10 10

1 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 2 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 2 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 2 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 2 0 0 0 0 1

A

 

  

 

  

 

  

 

  

 

 
 


 
 
 

 
 

  
 

 
 

 
 
 
  

 (12) 

with the coefficients i  specified by (8). The matrix A consists of entries along the main diagonal 

and a band of 3 entries wide centered in the lower diagonal part of A. Explicitly defining the 

matrix as sparse in MATLAB speeds computations and decreases the memory requirement. 

An alternative breakage model has each crystal breaking into two crystals according to a 

uniform distribution (by number) of each crystal mass smaller than the parent crystal. The matrix 

analogous to A for the 10×10 case is 
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2 2 2

3 3 3 3 3

4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7 7 7 7 7 7

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

9 9 9 9

1 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0

1 0 0 0 0 0

2 1 0 0 0 0

1 0 0 0

2 1 0 0

B

  

    

      

        

          

            

              

    
















9 9 9 9 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

1 0

2 1

           

                  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  

(13) 

with the values i  being the same as defined above. Assuming each integer breakage is equally 

probable, the parameter 

 

2
, odd

1

2
, even

i

i
i

i
i




 

 



 (14) 

ensures an overall conservation of mass. A third alternative model assumes that the particles 

resulting from breakage are normally distributed, which for the 10×10 case replaces the matrix A 

by 

2,1 2 2

3,1 3 3,2 3 3

4,1 4 4,2 4 4,3 4 4

5,1 5 5,2 5 5,3 5 5,4 5 5

6,1 6 6,2 6 6,3 6 6,4 6 6,5 6 6

7,1 7 7,2 7 7,3 7 7,4 7 7,5 7 7,6 7 7

8

1 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0

1 0 0 0 0 0

2 1 0 0 0 0

1 0 0 0

C

  

    

      

        

          

            
















,1 8 8,2 8 8,3 8 8,4 8 8,5 8 8,6 8 8,7 8 8

9,1 9 9,2 9 9,3 9 9,4 9 9,5 9 9,6 9 9,7 9 9,8 9 9

10,1 10 10,2 10 10,3 10 10,4 10 10,5 10 10,6 10 10,7 10 10,8 10 10,9 10 10

2 1 0 0

1 0

2 1

             

                

                  

 
 
 
 
 








 

  












(15) 

where 
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max

2

,

,

1 2
exp ,

42

,

i j

i i j

i j
j i

j i

  

 

  
     

 

 (16) 

and  is the standard deviation of the normal distribution. Mass is conserved by rescaling the 

values of ,i j in (16) so that ,i j

j

j i   for odd i, and , , /2i j i j

j

j j i    for even i. This model 

has the highest probability that crystals break into equal sizes, with monotonically lower 

probability as the difference in size between the broken crystals become larger. Since the curve is 

symmetric, in row 10, 10,5 is the maximum value and 10,4 10,6  , etc. 

2.3 Parameter Estimation 

Each model produces a mass distribution for specified values of the two model parameters, 

S0 and q, which were compared to the experimental data by comparing cumulative mass 

distributions Fmodel and Fexp. The use of cumulative distributions avoids the binning errors that 

arise when histograms are used to approximate distributions. Under the assumption of additive 

independent measurement errors, the maximum-likelihood and minimum-variance parameters 

based on the Riemann-sum approximation of the integral-form for the squared error are the 

solution of the optimization 

 
2 model exp

21
min ( , ; ) ( , )

j i j i j i

ij

F t m F t m t m

i j




   
   (17) 

With the assumption that the σij are all equal, the Δtj are all equal and setting Δmi = 1 weighs the 

cumulative mass distributions more heavily where more data points have been collected; with E 

equal to the difference between the model and experimental cumulative distributions, the 

expression (17) can be simplified to 

  2 Tmin min
ij ij

i j i j

R E E E
 

    (18) 

MATLAB is inherently slow when dealing with loops and fast when using matrix-vector 

arithmetic. Objective (17) can be computed as a single function call to the Frobenius norm of the 

matrix E, or the elements of the matrix E can be stacked as a long vector and the objective 

computed using the vector 2-norm or vector-vector multiply commands.  

Confidence regions for the parameters  = [S0 q]T were estimated using the F distribution 

(Beck & Arnold, 1977), 
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 

1 ( , )
/( )

S R
F p n p

R n p






 


, (19) 

where the sum-of-squared-deviations (S    is the objective function in (18), n is the number of 

data points, p is the number of parameters, and 1   is the confidence level for the region. 

3 Results and Discussion 

The parameters for the model that assumes equal-size binary breakage were estimated from 

the experimental data from 1-minute trials for aspirin in dodecane for 6 different levels of 

ultrasonic power. The confidence regions around the maximum-likelihood estimates of the 

efficiency factor S0,opt = 9.8×10
–4

 and qopt = 0.074 are shown in Fig. S2. The uncertainties in the 

efficiency factor S0 are <10% but somewhat larger for the exponent q on a relative basis. The 

positive value for exponent q indicates that large crystals are more likely to break than small 

particles, but that the dependency is rather small. The crystal size distribution for the population 

balance model for crystal breakage in the presence of ultrasound nearly overlaps the 

experimental data for applied power between 10 and 40 W, with noticeable deviations for 3 and 

5 W (see Fig. 5). A potential explanation is that the linear dependency on applied power in Eq. 6 

is less accurate at low values of applied power. The population balance model quantitatively 

described the changes in the mass distributions due to increased breakage as ultrasonic intensity 

increased (Fig. 5). 

A second set of experiments measured the effects on ultrasound on the cumulative mass 

distributions for aspirin in silicone oils of 10 different viscosities (see Fig. 6). As before, the 

cumulative mass distributions obtained for the best-fit model parameters were in agreement with 

experimental data. The model quantitatively described the effect of decreased breakage on the 

mass distributions as the liquid viscosity increases, due to decreased cavitation (for increased 

liquid viscosity, more energy would be required to induce cavitation). The confidence regions 

computed for the best-fit model parameters S0,opt = 8.8×10
–4

 and qopt = 5.6×10
–6

 are shown in Fig. 

S3, which show less than 2% uncertainty in the efficiency factor S0. For this set of experiments, 

the value of zero for the exponent q falls within the confidence regions indicating that the 

dependency of the breakage rate on mass was not statistically significant for silicone oils with 

this range of viscosities. One possible explanation for this observation is that larger crystals 

interact with more cavitation bubbles per unit time but have more inertia are so are less affected 
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by each cavitation bubble, and these competing effects cancel so that the effect of the mass on 

the breakage rate is negligible. In either case, it is encouraging that the values of the two best-fit 

model parameters are similar for the varying ultrasonic power and varying viscosity data sets. 

For the uniform breakage model (13), the best-fit model parameters were S0,opt = 8.3×10
–6 

and qopt = 1.1 for the experiments with varying ultrasonic power and S0,opt = 2.6×10
–8

 and qopt = 

2.0 for the experiments with varying liquid viscosity. The corresponding confidence regions for 

the model parameters are shown in Figs. S4–S5, which show 10 to 20% uncertainty in S0. An 

interesting observation from Figs. S4–S5 for the uniform binary breakage model is that the best-

fit exponent qopt has nominal values that are very close to integers with very small confidence 

intervals. The uncertainties in the efficiency factor S0 are much larger and the fits to the 

experimental cumulative mass distributions for the uniform breakage model in Figs. S6–S7 are 

not as good as for the equal-size breakage model, as shown by comparing coefficients of 

determination in Table 1. Further, the values for the two best-fit parameters are very different for 

the varying ultrasonic power and varying viscosity data sets. As such, it is not recommended to 

try to read too much meaning into the best-fit exponent qopt having nearly integer values. 

The reduction in fitting capability observed in the uniform breakage model motivated the 

third breakage model (15) that includes an additional parameter, which is a standard deviation. In 

comparison to the 2-parameter models, a high value for the standard deviation approximates the 

uniform breakage model, while a standard deviation approaching zero is asymptotic to the equal-

size breakage model. The best-fit model parameters were S0,opt = 7.1×10
–4

, qopt = 0.16, and σopt = 

32 for the experiments with varying ultrasonic power and S0,opt = 8.8×10
–4

, qopt = 1.3×10
–13

, and 

σopt = 0.12 for the experiments with varying liquid viscosity. A value of σopt = 32 corresponds to a 

broad size range for broken particles whereas σopt = 0.12 corresponds very closely to the equal-

size breakage model. The values for the best-fit model parameters S0,opt = 8.8×10
–4

 and qopt ≈ 0 

for the varying liquid viscosity experiments for the three-parameter model are statistically 

indistinguishable from values obtained by the equal-size breakage model (Table 1). For both data 

sets, the 3-parameter breakage model does not provide a significant improvement in fit to the 

experimental data (e.g., cf Figs. 5 and 6 with Figs. S8–S9). Confidence regions for the 3-

parameter model (15) are shown in Figs. S10–S11 as projections onto 2D planes for power and 

viscosity, respectively. The relative uncertainties in the model parameters q and σ are large for 
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the experiments with varying viscosity (Fig. S11) and the best-fit values for both parameters are 

near zero, providing further lack of experimental support for the three-parameter model. 

The above statistical analysis supports the equal-size breakage model. Additional support is 

provided by close inspection of the experimental cumulative mass distributions for the varying 

liquid viscosity. For the highest values of the viscosity (e.g., ≥ 220 cSt), the particle size 

distribution (Fig. 6) is nearly indistinguishable the initial size distribution (Fig. S1), with more 

than 5% of the crystals with mass of 11–14 ng (1.1×10–11–1.4 × 10–11 kg). At the high liquid 

viscosity, cavitation bubbles have insufficient energy to break the particles. As the viscosity is 

reduced from 220 to 100 cSt, the number of particles around 11–14 ng (1.1×10–11–1.4×10–11 kg) 

monotonically decreases, without observing any crystals between 7 ng and the group of particles 

at 11–14 ng (1.1×10–11–1.4×10–11 kg). If the particles broke into two equal-sized pieces, then the 

particles of mass 11–14 ng would break to produce crystals of 5.5–7 ng (5.5×10–12–7×10–12 kg), 

which would all be less than 7 ng (7×10–12 kg) just as seen in Fig. 6. If the particles broke into 

multiple particles of other sizes, then particles would be observed between 7 and 11 ng (7×10–12–

1.1×10–11 kg). The experimental data support both the assumptions that the particles break into 

two particles and the two particles are equal sizes, that is, the binary equal-size breakage model. 

Further, the breakage rate in this model was well described by combining (5) and (6) and setting 

q = 0 to give 

 
0( ) exp( 0.0069 )S m S    , (20) 

which is proportional to the ultrasonic power, exponentially decreasing with respect to the liquid 

viscosity, and independent of the particle mass. 

The breakage of particles into equal-sized particles has not been observed in some other 

systems, such as Al2O3 particles (Raman and Abbas, 2008). One question that arises is why the 

statistical analysis indicates that each aspirin crystal breaks into two crystals of equal mass. This 

observation is likely to be associated with the particle shape of the aspirin crystals, which were 

thin and flat (Fig. 1c). The torque on the crystals is largest along the longest of the three 

directions and so each crystal is most likely to break along the longest direction in response to 

the force generated by imploding cavitation bubbles. Similarly, the minimum torque required to 

break a flat thin crystal in half is lower than the torque required to break the crystal in any other 

location. 
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The population balance model was also compared to particle size data collected for 

experiments carried out for 4 s, 20 s, 60 s, 300 s, and 600 s with fixed fluid viscosity and 

ultrasound power of 10 W and 30 W (Section 5.3.5 of Zeiger, 2012). The longest time of 10 

minutes was selected as being the time when the size distribution changed very slowly for both 

values of ultrasound power. The model agreement with data was very good for all times (Figure 

5.19 of Zeiger, 2012, not included here for brevity). 

4 Conclusions 

Population balance models for the breakage of aspirin crystals in dodecane and silicone oils 

due to ultrasonication are presented that relate breakage rate proportionally to ultrasonic intensity 

and exponentially to fluid viscosity. The resulting population balance models provide reasonable 

agreement with the experimental data over the ranges of applied power and solvent viscosity 

investigated, with nearly overlapping crystal size distributions for applied power between 10 and 

40 W. A comparison of the crystal size distributions with experimental data provided more 

support for binary breakage events where the crystals break in half than for binary breakage 

events that produce uniformly distributed particle sizes. A 3-parameter model that generalized 

both equal-sized and uniformly distributed particle sizes did not produce statistically significant 

improvements in the model fit to the experimental particle size distributions. The dependency of 

the breakage rate on the particle mass was observed to be small for the binary equal-size 

breakage model. A thin flat shape of the aspirin crystals may explain why these crystals were 

well modeled by a binary equal-size breakage model. 

This article describes the most advanced population balance model yet developed for 

describing ultrasound-induced breakage of crystals. Such models may have promise for the 

selection of ultrasonic conditions that best move a crystal size distribution towards a target 

distribution. 
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Figures 

 

 
Figure 1: (a) Schematic of experimental setup for sonofragmentation experiments, with the 20 kHz ultrasonic horn 

shown in the middle with power supply at the top. (b) Photograph of glass cell within which fragmentation was 

induced. (c) SEM image of aspirin crystals synthesized in dodecane. 

 
 

Figure 2: An exponential relationship was observed between the number of cavitation events and the liquid 

viscosity subjected to ultrasound. The experimental setup involved counting the number of holes generated by 

cavitation bubbles in a foil target in 40 mL of liquid at a specified distance from the probe tip for 30 seconds. A 

description of the laboratory system and experimental procedures to measure cavitation events is available 

elsewhere (Lifshitz et al., 1997), with the details of our specific experimental setup in Figure 5.14 and Section 5.3.4 

of Zeiger (2012). 
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Figure 3: An equal binary breakage model with crystal masses restricted to integer values. 

 
Figure 4: Histogram of crystal masses prior to sonication (159 representative particles shown). 

 
Figure 5: Cumulative mass distributions for the equal binary breakage model (7) with best-fit model parameters S0 

and q (red line) and experiments (blue dots) for variations in the ultrasonic power in the solvent dodecane (viscosity 

= 1.8 cSt). Due to finite sampling, fewer samples are observed near the tails of the mass distributions for 20, 30, and 

40 W. 
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Figure 6: Cumulative mass distributions for the equal binary breakage model (7) with best-fit model parameters S0 

and q (—) and experiments (•) for variations in the liquid viscosity at an applied ultrasound power of 30 W. The gap 

between 6 and 10 ng observed in the mass distributions for large viscosities, which have limited breakage, 

corresponds to the gap reported in mass distribution before sonication (see Figure 4). 
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Table 

 

Table 1: Coefficient of determinations (R2) for the models with the optimal parameters for each breakage model and 

set of experiments. The equal-size breakage model provides nearly the highest R2 while being simpler and having 

one less parameter than the normal breakage model. 

 

Experiment 
Breakage Model 

Equal Uniform Normal 

Power 0.951 0.820 0.955 

Viscosity 0.964 0.873 0.964 
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